
Immersive Mixed-Reality Configuration of Hybrid User Interfaces

Christian Sandor
TU München, Institut f̈ur Informatik

sandor@in.tum.de

Alex Olwal
Royal Institute of Technology, NADA

alx@kth.se

Blaine Bell, Steven Feiner
Columbia University, Department of Computer Science

{blaine,feiner}@cs.columbia.edu

Abstract

Information in hybrid user interfaces can be spread over
a variety of different, but complementary, displays, with
which users interact through a potentially equally varied
range of interaction devices. Since the exact configuration
of these displays and devices may not be known in advance,
it is desirable for users to be able to reconfigure at runtime
the data flow between interaction devices and objects on the
displays. To make this possible, we present the design and
implementation of a prototype mixed reality system that al-
lows users to immersively reconfigure a running hybrid user
interface.

1 Introduction

In hybrid user interfaces[2, 3, 10], information can be
distributed over a variety of different, but complementary,
displays. For example, these can include stationary, opaque
displays and see-through, head-worn displays. Users can
also interact through a wide range of interaction devices. In
the unplanned, everyday interactions that we would like to
support, we would not know in advance the exact displays
and devices to be used, or even the users who would be in-
volved. All of these might even change during the course of
interaction. Therefore, a flexible infrastructure for hybrid
user interfaces should automatically accommodate a chang-
ing set of input devices and the interaction techniques with
which they are used. This paper presents the first steps to-
ward building a mixed-reality system that allows users to
configure a hybrid user interface.

A key idea underlying our work is to immerse the user
within the authoring environment. Immersive authoring has
been explored by Lee and colleagues [5], in a system that
has a wider range of possible parameters than we currently
support. While their system is restricted to a single view

and interaction with real objects is limited to AR Toolkit1

markers, our system supports multiple coordinated views
with different visualizations and interaction with a variety
of physical controllers.

As a first step towards allowing end users to configure
hybrid user interfaces, we have realized a specific scenario,
which we support with an augmented reality overlay, pre-
sented on a head-tracked, see-through, head-worn display.
In our scenario, a user interacts with physical input devices
and 3D objects drawn on several desktop displays. The in-
put devices can be configured to perform simple 3D trans-
formations (currently scale, translation, and rotation) on the
objects. The user’s see-through head-worn display overlays
lines that visualize data flows in the system, connecting the
input devices and objects, and annotates each line with the
iconic representation of its associated transformation. The
user wields a tracked wand with which she can reconfigure
these relationships, picking in arbitrary order the three el-
ements that comprise each relationship: an input device, a
3D object, and an operation chosen from a desktop menu.

While we have designed our initial scenario to be sim-
ple, we would ultimately like to support users in their daily
tasks. For example, a typical apartment contains function-
ality that a user might want to control (e.g., the volume of a
living-room audio system or the brightness of the lights in a
bedroom). Additionally, the user might own several pocket-
sized devices that she might want to use to control the apart-
ment. There are several possible reasons why a user might
want to reconfigure the way this functionality is controlled.
First, the apartment will be used in different contexts (e.g.,
the user is home alone, is having guests for dinner, or she
is having a cocktail party). Second, the user might buy new
input devices or new devices to control. Both cases require
the user to reconfigure the mapping of input devices to the
controlled functionality.

Thus, the objects used in our scenario are placeholders

1http://www.hitl.washington.edu/artoolkit



(a) (b) (c)
Figure 1. Videomixed view through another user’s tracked, see-through, head-worn display. (a) Lines show the data flow

between tracked input devices and virtual objects. (b) Untracked input devices are shown as screen-stabilized models. (c) A

tracked wand is used to reconfigure the data flow network.

for aspects of an application a user might want to manipu-
late, while the 3D transformations are placeholders for more
general operations a user could perform on them.

There is a long history of interactive control of anima-
tion with desktop devices, which Laszlo and colleagues re-
view [4]. There are also many examples of configuring in-
teraction devices at runtime to support a wide range of tasks,
from database queries [12] to musical performance [9]. Our
work differs from these in that we apply an immersive aug-
mented reality user interface to both interactively specify
and visually document the system data flow.

2 Interaction Design

We address two general issues in designing a reconfig-
urable user interface: presenting appropriate feedback and
supporting interactive reconfiguration.

2.1 Visual Feedback

We developed a simple graphical language to visualize
the relationships between objects, the input devices that
control them, and the associated operation. This provides
the user with an intuitive overview of the active mappings
in the environment.

A real object (or its virtual representation) is visually
connected to a controlling input device through a line that
can be seen in the head-worn display. An iconic represen-
tation of the currently assigned operation is attached to the
line. Figure 1(a) shows a view of the interaction and its
overlay as seen from the vantage point of another user. To
avoid clutter, we show a relationship’s visualization only
while the user manipulates its associated input device or re-
configures its mapping, as described below.

Some of our input devices are not tracked, and, therefore,
their locations are unknown. We represent an untracked in-
put device by a screen-stabilized image (fixed to the coordi-
nate space of the head-worn display), and draw a line from
the appropriate part of that device to the virtual object it
controls, as shown in Figure 1(b).

2.2 Interactive Reconfiguration

The user can interactively create or modify existing rela-
tionships with a tracked wand, as shown in Figure 1(c). To
establish a relationship between a physical device and a vir-
tual object, three attributes need to be chosen (in any order):
an operation, a physical device, and a target virtual object.
The physical device and target virtual object are selected by
moving the wand within the proximity of a physical object
or a virtual object’s projection on a physical display, trig-
gering highlighting and auditory feedback. The operation is
selected by moving the tip of the wand to one of the opera-
tions displayed on a printed 3×3 grid at a known location on
the desk. Our menu, inspired by the printed wall-mounted
menu of [13], allows the specification of translation, rota-
tion, and scale along thex, y, or z axis.

Table 1 represents all possible states that can occur when
a relationship with a tracked device is being configured: the
input (target object, input device, and operation) is mapped
to how the connection is displayed (the beginning and end
points of the line, and whether the icon is shown). For
example, when both the target object (highlighted on the
screen) and the operation (displayed as an icon) are se-
lected, as shown in Figure 1(c), the user still needs to select
the input device.

Table 1. Visual feedback provided during reconfigura-

tion of tracked devices. wandbase is the wand’s base,

wandtip is the wand’s tip, device is the physical input

device and target is the selected virtual object.

!"#$% &!"'()''*+,-.

!"#$%! &%'()%* +,%#"!(+- .%$(-/ %-&/ ()+-

0 1 2"-&."/% 2"-&!(, 1
3 1 2"-&!(, &%'()%

4 1 1 2"-&!(, &%'()% 1
5 1 2"-&!(, !"#$%!

6 1 1 2"-&!(, !"#$%! 1
7 1 1 &%'()% !"#$%!

8 1 1 1 &%'()% !"#$%! 1



Input

Dialog Control

Presentation

Dialog Control

Input

Sound 
Feedback

Stationary
View

Head-worn 
Display

View

Collision 
Detection

Interaction 
Logic

InterSense
Tracker

Physical Input

PowerMates MIDI Input Game
 Controller

Figure 2. Mapping of components to subsystems. White

components are implemented in DWARF, light grey com-

ponents in Unit, and dark grey components in DP.

Therefore, a line is drawn from the tip of the wand to the
target object, as specified in the fifth row of Table 1.

For untracked controllers, touching a “Learn” button
causes the next device manipulated by the user to be se-
lected for assignment. (In contrast to our fixed printed
menu, we are experimenting with projecting the Learn but-
ton on the desk such that it automatically avoids being oc-
cluded from the user’s viewpoint by the tracked board [1].)

3 Implementation

Our prototype is built using a set of existing frameworks.
The overall architecture and most of the components are
taken from the DWARF user interface framework [11], the
input device handling is inspired by Unit [8], and the ma-
terial presented on the head-worn display uses the DP (data
programming) framework [1], as shown in Figure 2. We
chose this mapping based on the strengths of each frame-
work. The head-worn display view relies on the ability to
easily specify rules in DP, while the many input devices sup-
ported by Unit made it a natural match for the input device
drivers. The remaining components are based on existing
DWARF components (with only the PowerMates compo-
nent implemented from scratch).

The data flow between the components relies on two
different mechanisms. Within each framework, we use
the framework’s native communication protocol: CORBA
(Common Object Request Broker Architecture) events for
DWARF, and UDP (User Datagram Protocol) for Unit and
DP. Across framework boundaries, we also use UDP, which
has proven to be a simple, yet viable solution. We run
Unit and DP frameworks on Windows XP Professional, and
DWARF on SuSE Linux Professional 9.1.

(a) (b)

(c) (d)
Figure 3. Input devices used in our prototype: (a) Dance

mat. (b) Game controller. (c) Wand with attached Inter-

Sense 6DOF tracker. (d) Tracked board with PowerMate

sensors (left) and MIDI sensors (right): sliders and bend

sensors attached to playing cards.

Our components include:
Stationary Views.Our two stationary views reuse DWARF’s
Open Inventor-based Viewer component [11]. We extended
this component to send 2D screen-space bounding box in-
formation for objects to the collision-detection component,
to allow collisions between the wand and objects on the
screens to be detected. This information is also sent to
the head-worn display view, enabling it to visualize rela-
tionships (through overlaid lines) between objects on the
screens and input devices.
Head-worn Display View.Each head-worn display view
uses the DP framework, which can efficiently implement
tabular mappings, such as those of Figure 1.
Interaction Logic.The interaction logic is modeled within
DWARF’s User Interface Controller component [11]. Petri
nets are used to specify and execute the interaction logic,
in the spirit of earlier work on User Interface Management
Systems [7].
Collision Detection.This DWARF component is based on
the Euclidean distance of the center points of tracked physi-
cal objects and the centers of the 2D screen-space bounding
boxes of virtual 3D objects.
InterSense Tracker.3D tracking is implemented using In-
terSense IS-900 and IS-600 trackers. This component is
a straightforward wrapper for the InterSense native library.
PowerMates. Our tracked board includes several Griffin
PowerMate2 rotary sensors.
MIDI Input Devices. The availability of many different
MIDI (Musical Instrument Digital Interface) input devices
motivated us to support them in our system. We use the Unit
framework to encapsulate MIDI functionality into a sepa-
rate Java-based library. An A/D converter3 converts analog
sensor data to 7-bit MIDI data, making it easy to support
bend sensors and sliders.
Game Controllers.To accommodate game controllers, we

2http://www.griffintechnology.com/products/
3http://infusionsystems.com/catalog/index.php



use a platform-specific library for low-level interfaces to
peripheral devices through the RAWINPUT functionality
in Windows XP. We support any number of Windows-
compatible game pads or joysticks, including the Microsoft
Sidewinder FreeStyle Pro gamepad, which has two ac-
celerometers for sensing pitch and roll. By using two types
of USB adapters that support up to four PlayStation con-
trollers, we exploit the wide range of controllers available
for the PlayStation platform, including a generic 1m×1m
dance pad with 14 buttons and an analog controller with
buttons and two analog joysticks.

4 Conclusions and Future Work
Our hybrid user interface allows the user to manipulate

objects through whole-body interaction (on the dance pad),
manual input devices (knobs, sliders, and bend sensors),
and game controllers. We support interactive end-user re-
configuration of the mapping between devices, objects, and
operations. Using a head-tracked, see-through display, we
provide overlaid visual documentation of the system’s cur-
rent configuration and overlaid visual and auditory feedback
as the system is reconfigured.

Currently, our system supports only a fixed number of
operations. We are exploring how we can extend it to al-
low users to specify new operations at runtime, such as
model deformation. While we anticipate using program-
ming by demonstration [6] to address a carefully planned
universe of possibilities, supporting arbitrary operations
through demonstration and generalization is an open prob-
lem. A more pragmatic approach to increase coverage
would be to use the Python services in DWARF [11], since
Python is well suited for rapid development by end-users
who can program. We are also interested in extending our
mappings to permit their parameters (e.g., scale factors) to
be modified interactively, employing techniques similar to
those used in Unit [8]. Additional enhancements that we
plan include support for grouping and selecting multiple
devices, operations, and objects, along with the ability to
load and save configurations. For example, we would like
to make it easy for a user to select a single device and spec-
ify that it controls multiple operations (e.g., scaling inx, y,
andz) on a group of objects.

As we extend our user interface, we will be designing a
formal user study to validate our approach, benefiting from
the informal user feedback that we gathered when demon-
strating earlier versions of the system. After receiving a
brief explanation of how to use the system, these early users
found it easy to reconfigure the system themselves, and told
us that they appreciated the overlaid visual and audio feed-
back provided during reconfiguration. Based on user feed-
back, we replaced textual annotations on the lines (visible in
the first segment of the accompanying video) with the iconic
representations of operations that we currently use. How-

ever, an overview visualization that showed all of the rela-
tionships simultaneously, proved too confusing to be useful
because of the visual clutter caused by overlapping lines and
icons. Therefore, we removed it from the current version
of the system. To address this problem, we are interested
in applying view-management techniques [1], information
filtering, and dynamic graph layout to improve the way in
which these relationships are displayed.

Acknowledgements
This research was funded in part by Office of Naval Re-

search Contract ONR N00014-04-1-0005. Christian San-
dor’s stay at Columbia University was partly sponsored by
a scholarship from the Deutscher Akademischer Auslands-
dienst. We also wish to thank Surabhan “Nick” Temiyabutr
for assembling the sensor board and Sinem Güven for
recording the voice feedback prompts.

References

[1] B. Bell. View Management for Distributed User Interfaces. PhD
thesis, Department of Computer Science, Columbia University,
New York, NY, 2005.

[2] A. Butz, T. Höllerer, S. Feiner, B. MacIntyre, and C. Beshers. En-
veloping users and computers in a collaborative 3D augmented re-
ality. In Proc. IEEE and ACM IWAR 1999, pages 35–44, San Fran-
cisco, CA, October 20–21, 1999.

[3] S. Feiner and A. Shamash. Hybrid user interfaces: Breeding vir-
tually bigger interfaces for physically smaller computers. InProc.
ACM UIST ’91, pages 9–17, Hilton Head, SC, November 11–13,
1991.

[4] J. Laszlo, M. van de Panne, and E. Fiume. Interactive control for
physically-based animation. InProc. SIGGRAPH 2002, pages 201–
208, New Orleans, LA, 2002.

[5] G. A. Lee, C. Nelles, M. Billinghurst, and G. J. Kim. Immersive
authoring of tangible augmented reality applications. InProc. IEEE
and ACM ISMAR ’04, pages 172–181, Arlington, VA, November
2–5, 2004. IEEE Computer Society.

[6] H. Lieberman, editor.Your Wish Is My Command. Morgan Kauf-
mann Publishers, 2001.

[7] D. Olsen. User Interface Management Systems: Models and Algo-
rithms. Morgan Kaufmann Publishers, 1992.

[8] A. Olwal and S. Feiner. Unit: Modular development of distributed
interaction techniques for highly interactive user interfaces. InProc.
GRAPHITE ’04, pages 131–138, Singapore, June 15–18, 2004.
ACM Press.

[9] I. Poupyrev. Augmented groove: Collaborative jamming in aug-
mented reality. InSIGGRAPH 2000 Conference Abstracts and Ap-
plications, page 77. ACM Press, 2000.

[10] J. Rekimoto and M. Saitoh. Augmented surfaces: A spatially con-
tinuous work space for hybrid computing environments. InProc.
CHI 1999, 1999.

[11] C. Sandor and G. Klinker. A rapid prototyping software infrastruc-
ture for user interfaces in ubiquitous augmented reality. InJournal
for Personal and Ubiquitous Computing. Springer Verlag, 2004.

[12] B. Ullmer, H. Ishii, and R. Jacob. Tangible query interfaces: Physi-
cally constrained tokens for manipulating database queries. InProc.
INTERACT ’03, Zurich, Switzerland, September 1–5, 2003.

[13] D. Vickers. Sorcerer’s Apprentice: Head-Mounted Display and
Wand. PhD thesis, Department of EE, University of Utah, Salt Lake
City, UT, 1972.


