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ABSTRACT

Augmented Reality (AR) is a promising candidate for the next gen-
eration of human computer interaction. However, a great number of
obstacles have to be overcome in order to make AR become widely-
acceptable. Among those obstacles, tracking is one of the ma-
jor well-known challenges. The state-of-the-art in AR proved that
PTAMM is one of the most promising tracking systems. However,
it is quite difficult to develop AR applications based on PTAMM
system because of its monolithic architecture. Therefore, modu-
larizing it for seamless integration is needed. On the other hand,
PTAMM distorts graphic results instead of undistorting the video
images, the result of which is a distorted augmented view. In this
paper, we present PTAMM-Plus, which refactored and extended
PTAMM by developing a well-formed API, re-arranging threads,
and improving the undistortion mechanism. Using PTAMM-Plus,
AR developers may easily build AR applications independently on
top of PTAMM. By rearranging threads and undistortion mecha-
nism, presented PTAMM-Plus also enhanced performance and ac-
curacy. In this paper, a testing oriented approach in software devel-
opment was applied when implementing the PTAMM-Plus.

Index Terms: D.1.3 [Concurrent Programming]: Parallel
programming— [I.3.6]: Computer Graphics—Methodology and
Techniques I.4.1 [Digitization and Image Capture]: Camera
calibration—Imaging geometry I.4.8 [Scene Analysis]: Tracking—
[H.1.2]: Models and Principles—User/Machine Systems

1 INTRODUCTION

Augmented Reality has evolutionarily changed our reality in sev-
eral aspects during the last decade. More than anything else,
vision-based tracking technologies are near commercial-product
quality. One of the most advanced and promising tracking systems
is PTAMM(Parallel Tracking and Multiple Mapping) [2], which
is an extension of PTAM(Parallel Tracking and Mapping). Using
PTAM, 3D point maps can be built while tracking on unprepared
environments. It applies fast corner detection algorithm for detect-
ing features and Lie group algebra for estimating 6DOF camera
pose. PTAMM, in addition, allows for multiple maps, detecting and
loading the matching map from the map database. Using PTAMM,
a user may scan over an area of interest and observe annotations
attached to the matching map.

However, PTAMM is known to be a highly monolithic system,
and hence it is difficult to improve performance or integrate with
other systems. Consequently, building a new AR application on
top of PTAMM is considerably difficult although tracking capabil-
ity of it has high potential for successful application development.
For this reason, demand for PTAMM wrapper is very high. There
are also rooms for accuracy improvement. PTAMM applies distor-
tion on rendered graphics instead of undistorting the video images,
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probably for performance reasons. But the results of which are dis-
torted AR images.

In this paper, we presented PTAMM-Plus, which improved
PTAMM in terms of seamless integration with other systems, more
natural blending of real and virtual contents, and performance. For
black-box approach integration, we refactored PTAMM and devel-
oped interface wrapper. By applying undistortion on wide images,
we enabled undistorted AR images, naturally overlaying virtual ob-
jects on real images. Finally, we re-arranged the threading mecha-
nism to compensate for performance degrade due to applying image
undistortion. As a result, computation overhead was even smaller
than the original PTAMM. PTAMM-Plus is not just a wrapper, it
is a refactorization and extension of PTAMM, which also enhanced
accuracy, performance, and adaptability.

2 RELATED WORK

From the dawn of augmented reality, the pioneers of AR have fo-
cused on embracing the challenges inherent in vision-based track-
ing. Two major approaches for Vision-based AR tracking are
marker-based and natural feature-based. Marker based tracking is
generalized as being off-line because it uses prior knowledge about
markers for tracking. In the off-line segment, ARToolKit[7] has
been recognized as the best candidate and widely used in AR sys-
tems. ARToolkitPlus[11] was developed based on ARToolKit, im-
proving interface (by providing class-based API), performance, and
stability.

Natural feature-based tracking technologies have recently im-
proved, demonstrating feasibility. There are three types of natural
features that are used for AR tracking: point features, edges, and
textures. Each of feature has its own strengths and weaknesses.
Point feature based tracking has been known to have advantages
in computational cost and real-time performance[8, 9]. Edge fea-
tures are robust and suitable for building structures[10]. Textures
are highly applicable in large scale situations because of benefits
from distinguish-ability[6].

Hybrid technology in tracking, for indoor and outdoor environ-
ments, has increasingly become popular since early 2000s. For in-
door solutions, the most well-known one may be combining iner-
tial sensors, camera and land-markers. For instance, Foxlin and
Neimark[5] have built a hybrid system which includes an inertial
sensor InertiaCube2, a low-resolution camera, and several land-
markers.

On the other hand, outdoor motion tracking problems seem
harder than indoor ones. The most widely adopted hybrid solution,
for outdoor combines orientation sensors and GPS receivers. For
example, Azuma et al. [1] have developed an Augmented Reality
system for outdoor, which includes 3DOF orientation sensors and a
GPS. He found that error rate was quite high because of limitations
of GPS and orientation sensors.

From examining outdoor tracking problems, we believe that
hybrid solutions, which combine several commercial-off-the-shelf
sensors without utilizing computer vision technologies, may not
achieve in reliable tracking information. Limitation of traditional
hybrid solutions, as discussed, has lead researchers to an alterna-
tive approach which combines traditional hybrid solutions and ad-
vanced computer vision technologies. For example, Reitmayr et
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al.[10] have developed an AR system combining a GPS and several
orientation sensors with edge recognition technique by applying a
Kalman filter.

Texture-based approch is computationally high comparing with
other two methods. While edge-based vision techniques are ap-
plicable to building structures, point feature-based methods can
be more widely applicable. Among point-feature based tracking
methods, PTAMM is one of the most promising and stable method.
However, PTAMM is known to be difficult to integrate with other
systems because of its monolithic nature. In this paper, we intro-
duce PTAMM-Plus, which is a better architecturally-designed and
improved version of PTAMM as ARToolKitplus is an improvement
of ARToolKit.

3 SYSTEM DESIGN

When refactoring a highly optimized system like PTAMM, it is very
important to choose an appropriate strategy. Because of the high
level of optimization in PTAMM, there are many dependencies be-
tween components and even some deliberate violations of encapsu-
lation principles. As a result, it is very challenging to modify, for
example, to connect external software components with PTAMM.
Therefore, we had to carefully approach this problem.

In the following, we explain how we have overcome these prob-
lems. First, we present the components of our extension. Second,
we present how we improved the threading model of PTAMM. Fi-
nally, after having modularized PTAMM, we have integrated it with
another AR framework to prove the successful modularization of
PTAMM.

3.1 Component Overview
Figure 1 depicts an overview of PTAMM-Plus, by showing which
additional components have been introduced and which compo-
nents of PTAMM have been modified. Before giving a brief de-
scription of each additional or modified component, we explain the
basic groups of components in PTAMM. PTAMM contains four
main groups of components: UI, core, utilities and IO. The core
components in PTAMM perform the central control tasks, such as
tracking and mapping. The UI components are built for user inter-
face and event handling. The IO components handles camera and
image processing. The Utilities components are considered as add-
ons to the system, because they contain additional functions which
make the system usable.
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Figure 1: Overview of PTAMM-Plus (modified and new components
are highlighted).
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Figure 2: Collaboration diagram of PTAMM-Plus.

Wrapper The Wrapper component is used to interface with
other applications or frameworks. Section 3.3 describes how we
have used the Wrapper component to interface PTAMM-Plus with
another framework.

Driver The Driver component is responsible for coordinating
the interactions between the other components; for example, it co-
ordinates the two core activities in PTAMM: tracking and mapping
(see Figure 2). During the initialization of the Driver component,
the Tracker component must be provided with an existing map.
Next, the main loop is entered. Whenever an image is provided
(typically by the Video Source component), it will be passed to the
Tracker component, which determines the camera pose, which will
be passed back to the Driver. The detailled threading behaviour of
this process is described in Section 3.2.

Tracker We have modified the original PTAMM tracker by
adding three additional methods. The first method allows the Driver
component to get the frustum matrix from the Tracker component
(for example, to provide it to outside renderers). The next two meth-
ods, have been added to make the tracking loop more modular. One
method has been added for providing the Tracker component with a
camera image. A complementary method has been added to acquire
the calculated pose from the Tracker component.

Calibrator In order to support our improved undistortion
method (see Section 4), we had to modify PTAMM’s Calibrator
component. For example, we had to add the abilities to compute
an undistortion map and generate a central cut-out. Furthermore,
we have added the capability to use the undistortion mechanism of
OpenCV1.

3.2 Threading

PTAMM is a multi-threaded program; UI and tracking are opti-
mized within one thread while mapping runs on another thread. A
third thread is used to handle input from the command line; this is
for debugging purposes only. Further investigation reveals that the
central part in PTAMM is the main loop in the main thread, which
is responsible for grabbing images and estimating the camera pose.
The main thread in PTAMM includes: UI, tracking, and central
control.

In order to improve PTAMM’s performance, we have consecu-
tively removed functionality from the main thread. To support this
activity, we have created an additional threading model, besides the
standard deployment threading. In the following, we describe these
two threading models.

1http://www.opencv.org
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(b) Deployment

Figure 3: In development stage, a seperate thread (Driver) is im-
plemented, which synchronously communicate to Tracking thread of
PTAMM. However, in deployment stage, Driver thread and Tracking
thread are merged together.

Multiple Threads in Front-End for Development In order to
improve the speed of the Main thread, we have migrated function-
ality from the Main thread into the Driver thread. During develop-
ment, the Driver thread is synchronously connected to PTAMM’s
threads (see Figure 3a). This made development and testing easier,
as changes could be tested outside PTAMM. During development,
the Driver thread runs first as the main thread. Then, the tracking
thread from PTAMM is initialized and updated continuously. At
the moment of being started, the tracking thread in PTAMM ini-
tializes and starts the mapping thread. The mapping thread runs
asynchronously with the tracking thread, while the Driver thread
and tracking thread are synchronized (see Figure 3a). However, be-
cause of synchronization, performance of the whole system suffers.
Therefore, it is needed to merge the Driver thread and the tracking
thread at deployment time, in order to improve performance.

Merging Threads for Deployment In the deployment stage,
the Driver thread and PTAMM’s main thread are merged (see Fig-
ure 3b) in order to improve performance of PTAMM-Plus.

3.3 Integration with TINT
PTAMM-Plus has been successfully integrated into TINT[4], the
AR framework used in our lab. The integration was straightfor-
ward, as only the Wrapper component of PTAMM-Plus had to be
exposed. We believe that an integration into other frameworks
would be as straightforward. In the case of the integration with
TINT, the main challenge was to communicate efficiently between
C++ (PTAMM-Plus) and Python (TINT). We have addressed this
problem by employing Python Boost2 to automatically generate a
Python extension module.

Figure 4 shows the resulting component model. Compared to
Figure 2, it contains two additional layers. First, the Python Boost
layer, as explained in the previous paragraph. Second, it shows the
Python component in TINT, which is using PTAMM-Plus. Inside
TINT, this component is a sensor node in the dataflow network be-
tween input sensors (more details on TINT’s dataflow network are
given in[4]).

4 UNDISTORTION

PTAMM has been proven to gain advantages from using a fish-eye
lens. This type of lens allows PTAMM to discover more features
in the environment per frame than a normal lens. However, it will
also distort video image; as a result, straight lines in the world will
appear as distorted lines. Therefore, un-distortion must be applied
in order to realistically render and blend graphics and video image.

2http://boost.org
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Figure 4: Collaboration diagram of PTAMM-Plus and TINT.
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Figure 5: PTAMM’s distortion pipe-line.

4.1 PTAMM’s Camera Model
The camera model in PTAMM is the Tang model. It is believed
that using this type of model has advantages for developing math-
ematical framework. This model helps developing and explaining
distortion model more effective. Mathematical framework of FOV
model:

x′ = c(x/z) (1)

y′ = c(y/z) (2)

c = r′/r (3)

r =
√

(x2 + y2)/z2 (4)

r′ = (1/w)arctan(2r ∗ tan(w/2)) (5)

u = cx + fxx′ (6)

v = cy + fyy′ (7)

x,y,z: 3D position in the world coordinate
x′,y′: image plane at z=1
w: radial distortion coefficient
fx, fy: focal lengths of real camera
cx,cy: center point of real camera
u,v: 2D position of the point after projection to the camera plane

At (1) and (2), 3D point in the real world is projected to 2D point
in image plane at z =1; then this 2D point is distorted. In (6) and
(7), distorted point is projected to image plane of the camera. It
has been proven[3] that this FOV model produces lower error than
well-known model of Brown , with a caveat that each model can
have better performance in particular types of cameras.

4.2 New Method
In Figure 6, an image of the real world is seen as a distorted video
frame. Then, this video image will be undistorted. Undistorted
video image and graphics are cut out at center. Finally, processed
frame and graphics are blended together. PTAMM’s distortion
pipe-line (see Figure 5) is quite different from other AR systems. In
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Figure 6: Improved distortion pipe-line.

PTAMM, distorted video image is kept and blended with distorted
cut-out graphics. While improved un-distortion pipe-line is widely
adapted in AR systems. Indeed, approach of improved un-distortion
pipe-line is similar to OpenCV’s in spirit. However, in the proposed
solution, undistorted map – homographic map – is stored with scale
information. Scale information in two dimensions is stored in order
to support central cut-out of undistorted video image (see Figure 6
for detail). Consequently, cut-out of rendered graphics in this ap-
proach will follow central cut-out with scale information. In fact,
central cut-out is also applied in ARToolKit[7].

In order to improve performance, we applied homography un-
distortion mapping, which is similar approach in OpenCV. Thus, af-
ter calibrating, camera parameters and un-distortion map are stored.
This makes un-distortion processing at running time more effective;
consequently, it leads to better performance.

5 RESULTS

In this section, we first present three demo applications that we
have developed using PTAMM-Plus and TINT. Then, we present
a benchmark of our overall system.

5.1 Demo Applications
We have implemented three demo applications: object tracking, ta-
ble top, and outdoor tracking.

Object Tracking In current implementation, PTAMM is lim-
ited to object tracking. In particular, it can only track planar object.
This is because 3D map points in PTAMM have no visibility test-
ing; thus, all map points in camera view are projected on image
frame when searching for detected fast corner features in current
frame.

Table Top In this scenario, 6DOF camera pose tracking ability
of PTAMM-Plus has been examined. Table top demo tends to show
performance of PTAMM-Plus in small area with sustainable light
condition. Furthermore, it is also displayed result of proposed so-
lution (as showed in Figure 7c). Compared to PTAMM solution (as
seen in Figure 5b, the proposed solution conveys more meaningful
ideas for AR applications.

Outdoor Tracking Despite of lack experiment for outdoor sce-
nario, PTAMM can be considered as highly robust tracking system
for outdoor environment. This is showed in the demonstration in
(Klein & Murray 2007). For outdoor demonstration, a map has
been built; and then it was used instantly in PTAMM-Plus.

5.2 Benchmark
In order to compare performance of PTAMM and PTAMM-Plus,
we have developed a benchmark. The platform that we have em-
ployed for the benchmark is built with AMD Core2 3.0GHz (CPU),
3GB RAM. Our system environment for the benchmark is Ubuntu.

The method we have used to compare PTAMM and PTAMM-
Plus is observing and comparing computational time for the whole

(a) Planar object (pop-
corn box) is tracked,
then virtual model is
displayed on top

(b) Outdoor demo with
the virtual playground
rigorously registered in
the real world

(c) virtual popcorn box
is displayed in the real
world

Figure 7: Demo Applications.

system at each frame. We run PTAMM and output computational
time (include: tracking estimation, rendering, and UI processing)
every frame in a squence. With PTAMM-Plus, we also did similar
experiment to export another sequence of computational time. Then
we compared these two sequences and came to conclusion with a
plotted chart (see Figure 8).
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Figure 8: Comparison between PTAMM and PTAMM-Plus (tracking,
rendering and UI processing time consume).

As observed results from the comparision, PTAMM-Plus seems
to outperform original PTAMM. This is because PTAMM-Plus sup-
ports ability to control UI interaction and Tracking in separate
threads; while PTAMM highly tights Tracking and UI processing
into a single thread.

6 CONCLUSIONS

A robust and accurate tracking system is required for successful AR
applications. PTAMM allows for building and re-loading dense 3D
feature maps, and provides accurate and stable tracking informa-
tion. Although PTAMM has good potentials, it is not being widely
used because of its monolithic architectural nature. Our systematic
approach to tackle difficulties of monolithic architecture through
exploring parallelization and developing the wrapper enabled mod-
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ularization of PTAMM feasible and effective. Presented PTAMM-
Plus is not just a wrapper, it is rather a refactorization and extension
of PTAMM, which improved accuracy, performance, and adaptabil-
ity. We integrated PTAMM-Plus with TINT system seamlessly. Ac-
cording to our experiments, PTAMM-Plus provided accurate track-
ing information with enhanced performance over PTAMM.

We plan to make PTAMM-Plus available to developers and im-
prove usability and adaptability. As a future work, we also plan to
develop an automatic, fast, and autonomous initialization.
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